天增的博客
首页
博客
  • 分布式解决方案
  • Java并发工具包
  • redis
  • LeetCode
  • 系统设计
  • JVM体系
Github (opens new window)
Rss (opens new window)
  • zh-CN
  • en-US
首页
博客
  • 分布式解决方案
  • Java并发工具包
  • redis
  • LeetCode
  • 系统设计
  • JVM体系
Github (opens new window)
Rss (opens new window)
  • zh-CN
  • en-US
  • Java并发工具包
  • 并发基础
    • 线程基础
      • Thread的状态
      • 进程与线程
      • 正确停止线程的方式
      • Thread的实现方式
      • waitnotifynotifyAll
      • 生产者消费者模型
    • 线程安全
      • 线程不安全
      • 线程安全
      • 需要注意线程安全问题的情况
  • 并发工具
    • 线程协作
      • Semaphore信号量
      • CountDownLatch详解
      • 使用CompletableFuture解决旅游平台问题
      • 使用CyclicBarrier解决团建问题
    • Future
      • Future主要功能
      • FutureTask源码分析
    • ThreadLocal
      • ThreadLocal内存泄漏
      • ThreadLocal使用场景
    • 原子类
      • 原子类的作用概览
      • 原子类的性能分析
    • 阻塞队列
      • 常见的阻塞队列
      • 阻塞队列的常用方法
      • 什么是阻塞队列
    • 并发容器
      • HashMap
      • CopyOnWriteArrayList
      • ConcurrentHashMap详解
        • ConcurrentHashMap_JDK7
        • ConcurrentHashMap_JDK8
        • 对比Java7 和Java8 的异同和优缺点
    • 线程池
      • 为什么多线程会带来性能问题
      • 线程池的优势
      • 创建线程池的参数
        • 如何设置线程数
      • 线程池线程复用原理
      • ForkJoin框架
    • 各种锁
      • 锁的种类和特点
        • 公平锁非公平锁
        • 自旋锁非自旋锁
        • 共享锁独占锁
        • 乐观锁和悲观锁
      • JVM锁优化
      • synchronized和Lock的对比
      • lock的常用方法
  • 底层原理
    • CAS原理
    • AQS框架
    • 伪共享
    • java内存模型
      • Java内存模型介绍
      • happens-before规则
  • topic
  • Java并发工具包
  • 并发工具
  • 并发容器
  • ConcurrentHashMap详解
2022-04-21
目录

ConcurrentHashMap详解

# ConcurrentHashMap详解

ConcurrentHashMap是JUC包中提供的一个高性能并且线程安全的map集合。

相对于Hashtable这种, 对操作进行synchronized加锁的,ConcurrentHashMap却是用分段锁或者cas来操作的极大地提高了效率。

ConcurrentHashMap在JDK 1.7和1.8中的实现并不相同,所以我们分开来说。

# ConcurrentHashMap_JDK7

在JDK1.5~1.7版本,Java使用了分段锁机制实现ConcurrentHashMap。

分段锁,简单来说就是将Hash表划分成多段——Segment数组,每段单独进行上锁,每个段这个时候就相当于一个线程安全的HashTable。

在进行put的时候,根据Hash算法定位到某个Segment元素上,然后对此Segment进行加锁即可,避免了整个Hash表加锁。

# 数据结构

在不指定的时候,ConcurrentHashMap会将默认初始化一个长度为16的segment数组。

ConcurrentHashMap本质上是一个Segment 数组,Segment通过继承 ReentrantLock 来进行加锁,所以每次需要加锁的操作锁住的是一个 segment,这样只要保证每个 Segment 是线程安全的,也就实现了全局的线程安全。

ConcurrentHashMap

# 初始化

# 初始化

/**
     * 初始化创建一个指定了初始容量、负载因子、并行等级的map
     * 
     * @param initialCapacity 初始容量,这个值指的是整个ConcurrentHashMap的初始容量,实际操作的时候需要平均分给每个 
     * Segment。
     * @param loadFactor 负载因子,用于判断扩容的临界值
     * @param concurrencyLevel 默认16,并发数、Segment数组大小、并行级别。
     * 默认16就意味着最多只有16个线程同时写
     */
    @SuppressWarnings("unchecked")
    public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // Find power-of-two sizes best matching arguments
        int sshift = 0;
        int ssize = 1;
        // 计算并行级别 ssize,因为要保持并行级别是 2 的 n 次方
        while (ssize < concurrencyLevel) {
            ++sshift;
            ssize <<= 1;
        }
       // concurrencyLevel 为 16,sshift 为 4
       // 那么计算出 segmentShift 为 28,segmentMask 为 15,后面会用到这两个值
        this.segmentShift = 32 - sshift;
        this.segmentMask = ssize - 1;
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
      // initialCapacity 是设置整个 map 初始的大小,
      // 这里根据 initialCapacity 计算 Segment 数组中每个位置可以分到的大小
      // 如 initialCapacity 为 64,那么每个 Segment 或称之为"槽"可以分到 4 个
        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
         // 默认 MIN_SEGMENT_TABLE_CAPACITY 是 2,这个值也是有讲究的,因为这样的话,对于具体的槽上,
        // 插入一个元素不至于扩容,插入第二个的时候才会扩容
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        while (cap < c)
            cap <<= 1;
        // create segments and segments[0]
        // 创建 Segment 数组,
      // 并创建数组的第一个元素 segment[0]
        Segment<K,V> s0 =
            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                             (HashEntry<K,V>[])new HashEntry[cap]);
        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
        // 往数组写入segment[0]
        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
        this.segments = ss;
    }

初始化完成,我们得到了一个 Segment 数组。

我们就当是用 new ConcurrentHashMap() 无参构造函数进行初始化的,那么初始化完成后:

  • Segment 数组长度为 16,不可以扩容
  • Segment[i] 的默认大小为 2,负载因子是 0.75,得出初始阈值为 1.5,也就是以后插入第一个元素不会触发扩容,插入第二个会进行第一次扩容
  • 这里初始化了 segment[0],其他位置还是 null,至于为什么要初始化 segment[0],后面的代码会介绍
  • 当前 segmentShift 的值为 32 - 4 = 28,segmentMask 为 16 - 1 = 15,姑且把它们简单翻译为移位数和掩码,这两个值马上就会用到

# put过程分析

ConcurrentHashMap是通过key的hash寻找两次进行插入,第一次是找出Segment,第二次是找出具体的Hash

 public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
   			// 计算key的Hash值
        int hash = hash(key.hashCode());
        //  根据 hash 值找到 Segment 数组中的位置 j
        //    hash 是 32 位,无符号右移 segmentShift(28) 位,剩下高 4 位,
        //    然后和 segmentMask(15) 做一次与操作,也就是说 j 是 hash 值的高 4 位,也就是槽的数组下标
        int j = (hash >>> segmentShift) & segmentMask;
   			// 初始化的时候初始化了 segment[0],但是其他位置还是 null,
       // ensureSegment(j) 对 segment[j] 进行初始化
        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
            s = ensureSegment(j);
         // 找到槽s了,通过槽s暴露出的方法进行put操作
        return s.put(key, hash, value, false);
    }

Segment暴露出来的put方法:

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
            // 分段锁来了~,这一步只对这一段进行了一个加锁,以确保线程安全
            HashEntry<K,V> node = tryLock() ? null :
                scanAndLockForPut(key, hash, value);
            V oldValue;
            try {
                // segment内部的数组,存放元素的地方
                HashEntry<K,V>[] tab = table;
              	// 第二次,利用hash值取得在内部数组中的位置
                int index = (tab.length - 1) & hash;
                // first 是数组该位置处的链表的表头
                HashEntry<K,V> first = entryAt(tab, index);
              	// 接下来就是一大段循环链表的操作,用于插入具体元素
                for (HashEntry<K,V> e = first;;) {
                  	// 当链表中的元素不为空的时候
                    if (e != null) {
                        K k;
                      	// 加入,put的元素正好存在链表中,则把老的给替换掉
                        if ((k = e.key) == key ||
                            (e.hash == hash && key.equals(k))) {
                            oldValue = e.value;
                            if (!onlyIfAbsent) {
                                e.value = value;
                                ++modCount;
                            }
                            break;
                        }
                      	// 寻找下一个
                        e = e.next;
                    }
                    else {
                        // 到这个判断逻辑中,则说明了链表到了末尾 
                       // node 到底是不是 null,这个要看获取锁的过程,不过和这里都没有关系。
                       // 采用头插法进行插入。
                       // 如果不为 null,那就直接将它设置为链表表头;如果是null,初始化并设置为链表表头。																		 // 这也是区别于HashMap的地方,HashMap1.7中也是采用头插法但由于没有锁,扩容时会导致循环链表的出现
                        if (node != null)
                            node.setNext(first);
                        else
                            node = new HashEntry<K,V>(hash, key, value, first);
                        int c = count + 1;
                        // 如果超过了该 segment 的阈值,这个 segment 需要扩容
                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                            rehash(node);
                        else
                            // 没有达到阈值,将 node 放到数组 tab 的 index 位置,
                          // 其实就是将新的节点设置成原链表的表头
                            setEntryAt(tab, index, node);
                        ++modCount;
                        count = c;
                        oldValue = null;
                        break;
                    }
                }
            } finally {
               // 解锁
                unlock();
            }
            return oldValue;
        }

# 初始化槽: ensureSegment

ConcurrentHashMap 初始化的时候会初始化第一个槽 segment[0],对于其他槽来说,在插入第一个值的时候进行初始化。

这里需要考虑并发,因为很可能会有多个线程同时进来初始化同一个槽 segment[k],不过只要有一个成功了就可以。

private Segment<K,V> ensureSegment(int k) {
    final Segment<K,V>[] ss = this.segments;
    long u = (k << SSHIFT) + SBASE; // raw offset
    Segment<K,V> seg;
    if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
        // 这里看到为什么之前要初始化 segment[0] 了,
        // 使用当前 segment[0] 处的数组长度和负载因子来初始化 segment[k]
        // 为什么要用“当前”,因为 segment[0] 可能早就扩容过了
        Segment<K,V> proto = ss[0];
        int cap = proto.table.length;
        float lf = proto.loadFactor;
        int threshold = (int)(cap * lf);

        // 初始化 segment[k] 内部的数组
        HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
            == null) { // 再次检查一遍该槽是否被其他线程初始化了。

            Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
            // 使用 while 循环,内部用 CAS,当前线程成功设值或其他线程成功设值后,退出
            while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                   == null) {
                if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
                    break;
            }
        }
    }
    return seg;
}   

总的来说,ensureSegment(int k) 比较简单,对于并发操作使用 CAS 进行控制。

# 获取写入锁-scanandlockforput

前面我们看到,在往某个 segment 中 put 的时候,首先会调用 node = tryLock() ? null : scanAndLockForPut(key, hash, value),也就是说先进行一次 tryLock() 快速获取该 segment 的独占锁,如果失败,那么进入到 scanAndLockForPut 这个方法来获取锁。

下面我们来具体分析这个方法中是怎么控制加锁的。

private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
    HashEntry<K,V> first = entryForHash(this, hash);
    HashEntry<K,V> e = first;
    HashEntry<K,V> node = null;
    int retries = -1; // negative while locating node
    // 循环获取锁
    while (!tryLock()) {
        HashEntry<K,V> f; // to recheck first below
        if (retries < 0) {
            if (e == null) {
                if (node == null) // speculatively create node
                    // 进到这里说明数组该位置的链表是空的,没有任何元素
                    // 当然,进到这里的另一个原因是 tryLock() 失败,所以该槽存在并发,不一定是该位置
                    node = new HashEntry<K,V>(hash, key, value, null);
                retries = 0;
            }
            else if (key.equals(e.key))
                retries = 0;
            else
                // 顺着链表往下走
                e = e.next;
        }
        // 重试次数如果超过 MAX_SCAN_RETRIES(单核1多核64),那么不抢了,进入到阻塞队列等待锁
        //    lock() 是阻塞方法,直到获取锁后返回
        else if (++retries > MAX_SCAN_RETRIES) {
            lock();
            break;
        }
        else if ((retries & 1) == 0 &&
                 // 这个时候是有大问题了,那就是有新的元素进到了链表,成为了新的表头
                 //     所以这边的策略是,相当于重新走一遍这个 scanAndLockForPut 方法
                 (f = entryForHash(this, hash)) != first) {
            e = first = f; // re-traverse if entry changed
            retries = -1;
        }
    }
    return node;
}

这个方法有两个出口,一个是 tryLock() 成功了,循环终止,另一个就是重试次数超过了 MAX_SCAN_RETRIES,进到 lock() 方法,此方法会阻塞等待,直到成功拿到独占锁。

这个方法就是看似复杂,但是其实就是做了一件事,那就是获取该 segment 的独占锁,如果需要的话顺便实例化了一下 node。

# 扩容-rehash

重复一下,segment 数组不能扩容,扩容是 segment 数组某个位置内部的数组 HashEntry<K,V>[] 进行扩容,扩容后,容量为原来的 2 倍。

首先,我们要回顾一下触发扩容的地方,put 的时候,如果判断该值的插入会导致该 segment 的元素个数超过阈值,那么先进行扩容,再插值,读者这个时候可以回去 put 方法看一眼。

该方法不需要考虑并发,因为到这里的时候,是持有该 segment 的独占锁的。

// 方法参数上的 node 是这次扩容后,需要添加到新的数组中的数据。
private void rehash(HashEntry<K,V> node) {
    HashEntry<K,V>[] oldTable = table;
    int oldCapacity = oldTable.length;
    // 2 倍
    int newCapacity = oldCapacity << 1;
    threshold = (int)(newCapacity * loadFactor);
    // 创建新数组
    HashEntry<K,V>[] newTable =
        (HashEntry<K,V>[]) new HashEntry[newCapacity];
    // 新的掩码,如从 16 扩容到 32,那么 sizeMask 为 31,对应二进制 ‘000...00011111’
    int sizeMask = newCapacity - 1;
    // 遍历原数组,老套路,将原数组位置 i 处的链表拆分到 新数组位置 i 和 i+oldCap 两个位置
    for (int i = 0; i < oldCapacity ; i++) {
        // e 是链表的第一个元素
        HashEntry<K,V> e = oldTable[i];
        if (e != null) {
            HashEntry<K,V> next = e.next;
            // 计算应该放置在新数组中的位置,
            // 假设原数组长度为 16,e 在 oldTable[3] 处,那么 idx 只可能是 3 或者是 3 + 16 = 19
            int idx = e.hash & sizeMask;
            if (next == null)   // 该位置处只有一个元素,那比较好办
                newTable[idx] = e;
            else { // Reuse consecutive sequence at same slot
                // e 是链表表头
                HashEntry<K,V> lastRun = e;
                // idx 是当前链表的头结点 e 的新位置
                int lastIdx = idx;
                // 下面这个 for 循环会找到一个 lastRun 节点,这个节点之后的所有元素是将要放到一起的
                for (HashEntry<K,V> last = next;
                     last != null;
                     last = last.next) {
                    int k = last.hash & sizeMask;
                    if (k != lastIdx) {
                        lastIdx = k;
                        lastRun = last;
                    }
                }
                // 将 lastRun 及其之后的所有节点组成的这个链表放到 lastIdx 这个位置
                newTable[lastIdx] = lastRun;
                // 下面的操作是处理 lastRun 之前的节点,
                //    这些节点可能分配在另一个链表中,也可能分配到上面的那个链表中
                for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                    V v = p.value;
                    int h = p.hash;
                    int k = h & sizeMask;
                    HashEntry<K,V> n = newTable[k];
                    newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                }
            }
        }
    }
    // 将新来的 node 放到新数组中刚刚的 两个链表之一 的 头部
    int nodeIndex = node.hash & sizeMask; // add the new node
    node.setNext(newTable[nodeIndex]);
    newTable[nodeIndex] = node;
    table = newTable;
}

# get 过程分析

相对于 put 来说,get 就很简单了。

  • 计算 hash 值,找到 segment 数组中的具体位置,或我们前面用的“槽”
  • 槽中也是一个数组,根据 hash 找到数组中具体的位置
  • 到这里是链表了,顺着链表进行查找即可
public V get(Object key) {
    Segment<K,V> s; // manually integrate access methods to reduce overhead
    HashEntry<K,V>[] tab;
    // 1. hash 值
    int h = hash(key);
    long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
    // 2. 根据 hash 找到对应的 segment
    if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
        (tab = s.table) != null) {
        // 3. 找到segment 内部数组相应位置的链表,遍历
        for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                 (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
             e != null; e = e.next) {
            K k;
            if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                return e.value;
        }
    }
    return null;
}    

# 并发问题分析

现在我们已经说完了 put 过程和 get 过程,我们可以看到 get 过程中是没有加锁的,那自然我们就需要去考虑并发问题。

添加节点的操作 put 和删除节点的操作 remove 都是要加 segment 上的独占锁的,所以它们之间自然不会有问题,我们需要考虑的问题就是 get 的时候在同一个 segment 中发生了 put 或 remove 操作。

  • put 操作的线程安全性。
    • 初始化槽,这个我们之前就说过了,使用了 CAS 来初始化 Segment 中的数组。
    • 添加节点到链表的操作是插入到表头的,所以,如果这个时候 get 操作在链表遍历的过程已经到了中间,是不会影响的。当然,另一个并发问题就是 get 操作在 put 之后,需要保证刚刚插入表头的节点被读取,这个依赖于 setEntryAt 方法中使用的 UNSAFE.putOrderedObject。
    • 扩容。扩容是新创建了数组,然后进行迁移数据,最后面将 newTable 设置给属性 table。所以,如果 get 操作此时也在进行,那么也没关系,如果 get 先行,那么就是在旧的 table 上做查询操作;而 put 先行,那么 put 操作的可见性保证就是 table 使用了 volatile 关键字。
  • remove 操作的线程安全性。
    • remove 操作我们没有分析源码,所以这里说的读者感兴趣的话还是需要到源码中去求实一下的。
    • get 操作需要遍历链表,但是 remove 操作会"破坏"链表。
    • 如果 remove 破坏的节点 get 操作已经过去了,那么这里不存在任何问题。
    • 如果 remove 先破坏了一个节点,分两种情况考虑。 1、如果此节点是头结点,那么需要将头结点的 next 设置为数组该位置的元素,table 虽然使用了 volatile 修饰,但是 volatile 并不能提供数组内部操作的可见性保证,所以源码中使用了 UNSAFE 来操作数组,请看方法 setEntryAt。2、如果要删除的节点不是头结点,它会将要删除节点的后继节点接到前驱节点中,这里的并发保证就是 next 属性是 volatile 的。

# ConcurrentHashMap_JDK8

在 Java 8 中,几乎完全重写了 ConcurrentHashMap,代码量从原来 Java 7 中的 1000 多行,变成了现在的 6000 多行,所以也大大提高了源码的阅读难度。而为了方便我们理解,我们还是先从整体的结构示意图出发,看一看总体的设计思路,然后再去深入细节。

1.8数据结构

图中的节点有三种类型:

  1. 空着的位置代表还没有元素来填充
  2. 相同hash值使用链表向后进行延伸,此举和hashmap相同
  3. 在链表长度超过8,会将链表转换成为红黑树

我们先来看看最基础的内部存储结构 Node,这就是一个一个的节点,如这段代码所示:

static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    volatile V val;
    volatile Node<K,V> next;
    // ...
}

可以看出,每个 Node 里面是 key-value 的形式,并且把 value 用 volatile 修饰,以便保证可见性,同时内部还有一个指向下一个节点的 next 指针,方便产生链表结构。

下面我们看两个最重要、最核心的方法。

# put 方法源码分析

put 方法的核心是 putVal 方法,为了方便阅读,我把重要步骤的解读用注释的形式补充在下面的源码中。我们逐步分析这个最重要的方法,这个方法相对有些长,我们一步一步把它看清楚。

final V putVal(K key, V value, boolean onlyIfAbsent) {
    if (key == null || value == null) {
        throw new NullPointerException();
    }
    //计算 hash 值
    int hash = spread(key.hashCode());
    int binCount = 0;
    for (Node<K, V>[] tab = table; ; ) {
        Node<K, V> f;
        int n, i, fh;
        //如果数组是空的,就进行初始化
        if (tab == null || (n = tab.length) == 0) {
            tab = initTable();
        }
        // 找该 hash 值对应的数组下标
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            //如果该位置是空的,就用 CAS 的方式放入新值
            if (casTabAt(tab, i, null,
                    new Node<K, V>(hash, key, value, null))) {
                break;
            }
        }
        //hash值等于 MOVED 代表在扩容
        else if ((fh = f.hash) == MOVED) {
            tab = helpTransfer(tab, f);
        }
        //槽点上是有值的情况
        else {
            V oldVal = null;
            //用 synchronized 锁住当前槽点,保证并发安全
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    //如果是链表的形式
                    if (fh >= 0) {
                        binCount = 1;
                        //遍历链表
                        for (Node<K, V> e = f; ; ++binCount) {
                            K ek;
                            //如果发现该 key 已存在,就判断是否需要进行覆盖,然后返回
                            if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                            (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent) {
                                    e.val = value;
                                }
                                break;
                            }
                            Node<K, V> pred = e;
                            //到了链表的尾部也没有发现该 key,说明之前不存在,就把新值添加到链表的最后
                            if ((e = e.next) == null) {
                                pred.next = new Node<K, V>(hash, key, value, null);
                                break;
                            }
                        }
                    }
                    //如果是红黑树的形式
                    else if (f instanceof TreeBin) {
                        Node<K, V> p;
                        binCount = 2;
                        //调用 putTreeVal 方法往红黑树里增加数据
                        if ((p = ((TreeBin<K, V>) f).putTreeVal(hash, key,value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent) {
                                p.val = value;
                            }
                        }
                    }
                }
            }
            if (binCount != 0) {
                //检查是否满足条件并把链表转换为红黑树的形式,默认的 TREEIFY_THRESHOLD 阈值是 8
                if (binCount >= TREEIFY_THRESHOLD) {
                    treeifyBin(tab, i);
                }
                //putVal 的返回是添加前的旧值,所以返回 oldVal
                if (oldVal != null) {
                    return oldVal;
                }
                break;
            }
        }
    }
    addCount(1L, binCount);
    return null;
}

通过以上的源码分析,我们对于 putVal 方法有了详细的认识,可以看出,方法中会逐步根据当前槽点是未初始化、空、扩容、链表、红黑树等不同情况做出不同的处理。

# get 方法源码分析

get 方法比较简单,我们同样用源码注释的方式来分析一下:

public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    //计算 hash 值
    int h = spread(key.hashCode());
    //如果整个数组是空的,或者当前槽点的数据是空的,说明 key 对应的 value 不存在,直接返回 null
    if ((tab = table) != null && (n = tab.length) > 0 &&
            (e = tabAt(tab, (n - 1) & h)) != null) {
        //判断头结点是否就是我们需要的节点,如果是则直接返回
        if ((eh = e.hash) == h) {
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }
        //如果头结点 hash 值小于 0,说明是红黑树或者正在扩容,就用对应的 find 方法来查找
        else if (eh < 0)
            return (p = e.find(h, key)) != null ? p.val : null;
        //遍历链表来查找
        while ((e = e.next) != null) {
            if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}

总结一下 get 的过程:

  1. 计算 Hash 值,并由此值找到对应的槽点;
  2. 如果数组是空的或者该位置为 null,那么直接返回 null 就可以了;
  3. 如果该位置处的节点刚好就是我们需要的,直接返回该节点的值;
  4. 如果该位置节点是红黑树或者正在扩容,就用 find 方法继续查找;
  5. 否则那就是链表,就进行遍历链表查找。

# 对比Java7 和Java8 的异同和优缺点

# 并发度

Java 7 中,每个 Segment 独立加锁,最大并发个数就是 Segment 的个数,默认是 16。

但是到了 Java 8 中,锁粒度更细,理想情况下 table 数组元素的个数(也就是数组长度)就是其支持并发的最大个数,并发度比之前有提高。

# 保证并发安全的原理

Java 7 采用 Segment 分段锁来保证安全,而 Segment 是继承自 ReentrantLock。

Java 8 中放弃了 Segment 的设计,采用 Node + CAS + synchronized 保证线程安全。

# 遇到 Hash 碰撞

Java 7 在 Hash 冲突时,会使用拉链法,也就是链表的形式。

Java 8 先使用拉链法,在链表长度超过一定阈值时,将链表转换为红黑树,来提高查找效率。

# 查询时间复杂度

Java 7 遍历链表的时间复杂度是 O(n),n 为链表长度。

Java 8 如果变成遍历红黑树,那么时间复杂度降低为 O(log(n)),n 为树的节点个数。

参考链接:https://www.pdai.tech/md/java/thread/java-thread-x-juc-collection-ConcurrentHashMap.html

最近更新
01
以 root 身份启动 transmission-daemon
12-13
02
Debian系统安装qbittorrent-nox
12-09
03
LXC Debain12安装zerotier并实现局域网自动nat转发
07-29
更多文章>
Theme by Vdoing | Copyright © 2015-2024 天增 | 苏ICP备16037388号-1
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式